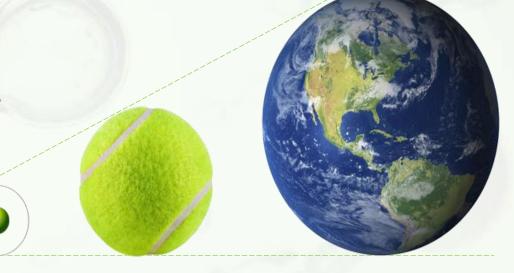


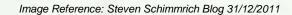
Overcoming Challenges in Hydrogen System Design

Mitchell Brunt - Commercial Director, Clean Energy

Who are FITOK and NVFCL?

- **FITOK**, a \$0.6bn fluid system solutions provider with over 25 years experience with a network of global sales and service centres
- Northern Valve & Fitting Company Limited (NVFCL),
 based in the Northwest, are the distributor and service
 centre for the FITOK across the UK
 - Active member of associations and trade bodies HIL, Hydrogen Scotland, BCGA, UK HEA, IGEM and Northwest Hydrogen Alliance
 - Collaborated with a major gas cylinder manufacturer to deliver high-profile hydrogen storage systems and an OEM supplier of pioneering hydrogen power units that deliver green off-grid power
 - Active participation in current projects such as HyNet, Teesside Hydrogen Hub, HAR1 awards and HAR2 bids




The Unique Nature Of H2

• H2 is among the smallest molecules in nature, which makes containment challenging

Critical considerations for leak-tight fitting connections

- Safety
 - Gas leaks are a safety risk
 - Human interaction during the refueling process
- Efficiency
 - Effective utilisation of all the hydrogen
 - Eliminate waste due to leakage
- Hydrogen embrittlement
 - H2 molecules at high pressure can diffuse into stainless steel and produce cracks
 - 316/316L materials of construction are critical to reduce the effects of HE

Current Jointing Considerations and their Challenges

- A wide range of application pressures up to 1000barg
- An understanding of which existing jointing technologies are not suitable for hydrogen
- Temperature range -40 to +120 C
- Hydrogen applications involving vibration
- Material choices metals and non-metals
- A need for disassembly/reassembly for maintenance
- How is the hydrogen system to be purged and tested?
- Legacy oil and gas specifications being adopted for hydrogen duty
- Knowing when advanced sealing solutions are needed

Hydrogen Systems Application Focus

Low Pressure Applications

High Pressure Applications

H2 Production

H2 Infrastructure and Distribution

H2 Storage

H2 Refuelling (HRFS)

Virtual Pipeline/Refueler

Heavy Duty On-Vehicle

Pressures typically <35 bar/Ambient

Pressures typically <85 bar/Ambient

Pressures typically <400 bar/Ambient

Pressures typically <1000 bar/-40C to 85C

Pressures typically <1000 bar/-40C to 85C Challenges:

Vibration

Pressures typically <875bar/-40C to 85C

Challenges:

- Vibration
- Certification

Increasing importance in design choices and the correct specifications for fluid system components

Leak Tight Integrity = Quality and Safety

Hydrogen fluid systems components can leak for a variety of reasons:

- Poor seal quality
- Poor material selection
- Permeation
- Pressure and temperature changes
- Poor system design and component selection
- Poor installation practices

However, competent system design can mitigate the effects of leakage

Permeation vs Leakage

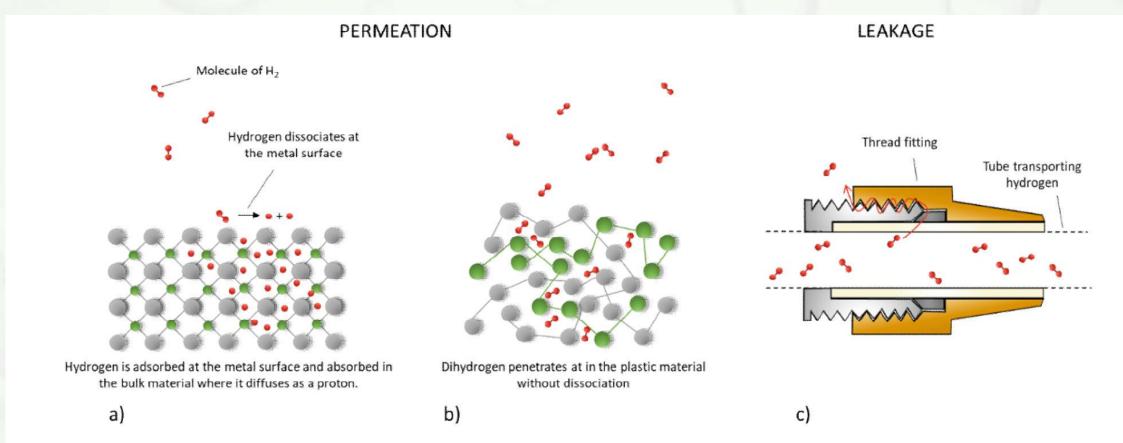
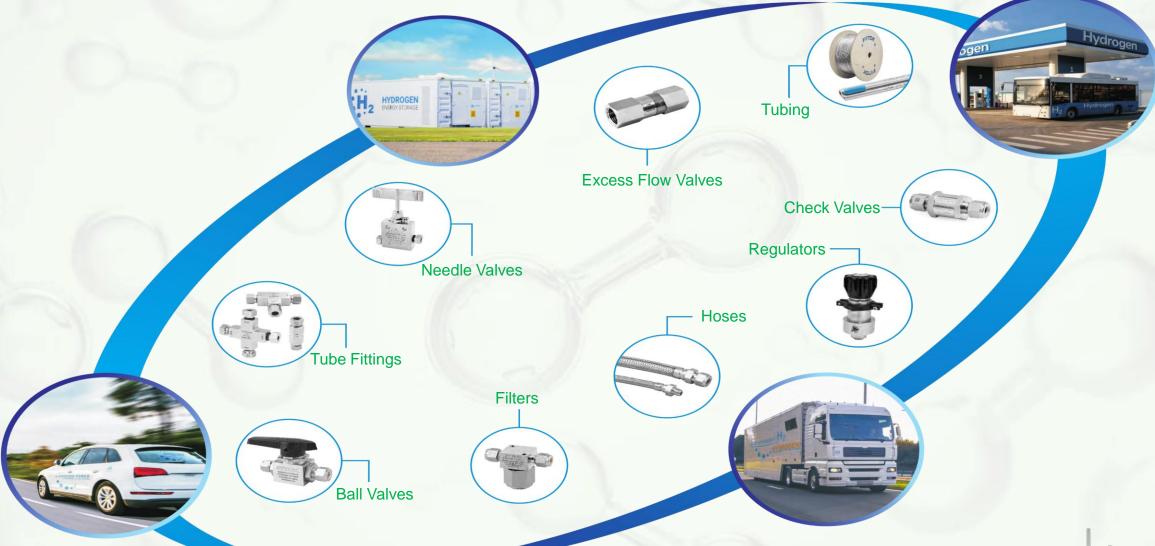


Figure 21 : Schematic representation of permeation in a) a metallic and b) a polymer material and c) leakage through a fitting in hydrogen gas environment.


316/316L Austenitic Stainless Steel

- 316/316L stainless steel alloys:
 - Nickel (stabilizes crystal structure of steel)
 - Chromium (corrosion-resistance)
 - Molybdenum (corrosion-resistance)
- Combatting H2 embrittlement and corrosion
 - ASTM requirements for 316 stainless
 - >10% Ni
 - >16% Cr
- Advantages to increased Cr and Ni
 - FITOK >12% Ni
 - FITOK >17% Chromium

Element	ASTM 316/316L Stainless Steel (%)	FITOK 316/316L Stainless Steel (%)	Industry trend (%)
Chromium	16-18	17-18	16-16.5
Nickel	10-14	12-14	10-10.5

Product Offering for Hydrogen

Education and Training

- Education is the key to dismissing myths about hydrogen
- Adapt skillsets to include hydrogen knowledge
- Raising awareness of hydrogen properties, risks and best practices
- Hydrogen system design courses to increase knowledge for designers and users
- Hydrogen system installation courses to upskill contractors from other industries

Installation & Safety
Training

Competence & Skills
Development

Standardised Training and Consistency

On-Site Project Support Services: For Increased Safety

- Highly trained network of technical engineers, specialising in hydrogen small bore tubing systems
- Competency and skills development
- Product specification and selection support
- Evaluation and optimisation of existing system designs
- Site support during installation and/or commissioning
- Advice on best practise

Thank you!

FITOK