

6 Engineering Your Safety Engineering Partner www.6engineering.co.uk

Safety Engineering Consultants <u>nick@6engineering.co.uk</u> +44 1224 460246 +44 1287 750911

6 Engineering

Safety. Engineering. Excellence.

Hydrogen Safety Engineering in Design - DSEAR

Delivered by:

Nick Howard

Safety Engineering Technical Authority

6 Engineering Limited

10th December 2024

Introductions

Nick Howard – Safety Engineering Consultant MSc BEng (Hons) AMIChemE FS Eng (TÜV Rheinland) PgCPD Hydrogen Safety Technologies

21 years experience:

Battery Production Power Generation (Conventional & Nuclear) Nuclear Decommissioning Biofuels Oil & Gas Petrochemicals Chemicals Food & Drink 14 years in Process/Technical Safety 6 Engineering Ltd

Independent Safety Engineering Specialists

Founded in 2011

Based in North-East England

Safety. Engineering. Excellence

Copyright @ 6 Engineering Ltd 2024, except where otherwise noted.

3 types of safety in design:

1.Project Safety

2.Product Safety

3. Process Safety

6 Engineering Safety. Engineering. Excellence

pyright © 6 Engineering Ltd 2024, except where otherwise noted.

1. Project Safety

Ensuring that the construction and installation is planned and executed in a safe manner:

Applicable legislation (*inter alia*): The Construction (Design and Management) Regulations 2015 (SI 2015/51)

6 Engineering Safety. Engineering. Excellence

opyright © 6 Engineering Ltd 2024, except where otherwise noted.

2. Product Safety

Ensuring that the product is designed such that it is installed and can be used in a safe manner:

Applicable legislation (*inter alia*): The Supply of Machinery (Safety) Regulations 2008 (SI2008/1597)

6 Engineering Safety. Engineering. Excellence

Copyright $\mbox{$^{\odot}$}$ 6 Engineering Ltd 2024, except where otherwise noted.

Keeping the process inside its containment:

Applicable legislation (*inter alia*): Well... it depends...

6 Engineering Safety. Engineering. Excellence

opyright ${\mathbb O}$ 6 Engineering Ltd 2024, except where otherwise noted.

Key UK Process Safety Legislation:

- COMAH: The Control of Major Accident Hazards Regulations 2015 (SI 2015/483)
- PSSR: The Pressure Systems Safety Regulations 2000 (SI 2000/128)
- DSEAR: The Dangerous Substances and Explosive Atmospheres Regulations 2002 (SI 2002/2776)

6 Engineering Safety. Engineering. Excellence

opyright © 6 Engineering Ltd 2024, except where otherwise noted.

An example application of DSEAR:

- Kittybrewster site, Aberdeen: hydrogen production and refuelling station
- Produces up to 350kg of hydrogen per day
- Refuels buses and cars up to 700bar

6 Engineering Safety. Engineering. Excellence

Key DSEAR Regulations:

- Regulation 5 Risk Assessment
- Regulation 7 Hazardous Area Classification
- Regulation 8 Accidents, Incidents and Emergencies
- Regulation 9 Procedures and Training

6 Engineering Safety. Engineering. Excellence

opyright $\ensuremath{\mathbb{O}}$ 6 Engineering Ltd 2024, except where otherwise noted.

Hazardous Area Classification:

- Step 1: pick a standard, e.g.:
 - IGEM/SR/25 Ed. 2 (+ HSE's 'Development of Hydrogen Supplement for use with IGEM/SR/25'
 - Step 2: select the appropriate zoning distance from the table (based on a 0.25mm² release):

Pressure (Barg)	Outdoor Freely Ventilated		Outdoor Confined or Congested		Indoor Adequately Ventilated	
	Normal	Adverse	Normal	Adverse	Normal	Adverse
>750 and ≤1000	14	40	18	45	22	60
>500 and ≤750	13	35	16	40	20	50
>300 and ≤500	11	30	13	35	17	40
>200 and ≤300	8	23	11	30	14	35
>100 and ≤200	7	19	8.5	23	12	30

6 Engineering

Safety. Engineering. Excellence

opyright © 6 Engineering Ltd 2024, except where otherwise noted.

Hazardous Area Classification

• Step 3: Apply the zones

Gases Zone	Gases	Zone Description
Zone 0		Continuous Release
Zone 1		Release Expected Frequently or For Long Periods
Zone 2		Release Expected Infrequently

6 Engineering Safety. Engineering. Excellence

Copyright ${\mathbb O}$ 6 Engineering Ltd 2024, except where otherwise noted.

Hazardous Area Classification

• Step 3: Apply the zones: 13m Zone 2 (outdoors, freely ventilated, not adverse conditions)

Safety. Engineering. Excellence vright © 6 Engineering Ltd 2024, except where otherwise n

What if a release ignites?

- Delayed ignition leading to explosion. Overpressure (and hence damage) depends on degree of confinement
- Immediate ignition leading to jet fire. Damage due to heat and physical impingement is mainly in the direction for the flame
- Jet fire length from a 3mm release at 700bar is ~6.5m

6 Engineering Safety. Engineering. Excellence

Copyright ${\mathbb G}$ 6 Engineering Ltd 2024, except where otherwise noted.

Jet fire length

- Jet fire length can be estimated using the nomogram developed by Molkov, 2009. (Ulster University)
- The graphical estimation of jet flame length using the nomogram requires only two parameters of a leak, e.g. storage pressure and actual diameter of the leak, which are usually available and do not require any calculations

Copyright © 6 Engineering Ltd 2024, except where otherwise noted.

6 Engineering

Typical Hazard Studies

- HAZID Hazard Identification Study
- FMECA Failure Modes, Effects & Criticality Analysis
- Consequence analysis dispersion, fire & explosion modelling
- HAZOP Hazard & Operability Study
- LOPA Layer of Protection Analysis
- SIL Allocation & Verification Calculations
- Functional safety assessments
- Safety case
- ALARP demonstration
- Pre-Startup Safety Review

6 Engineering Safety. Engineering. Excellence

Any Questions?

6 Engineering Safety. Engineering. Excellence

Copyright © 6 Engineering Ltd 2024, except where otherwise noted.

