

# Assessing Hydrogen Safety – the story so far

Jo-Anne Tomkins, Senior Principal Engineer 11 February 2025 WHEN TRUST MATTERS

### Introduction

# Hybeoloy









## Assessing Hydrogen Safety



Oil and Gas UK, Guidance on Risk Related Decision Making, Issue 2, 2014

## **Quantitative Risk Assessment**

- QRA is a formal method of quantifying risks
  - Usually fatalities, but can include injuries
  - Risk to individuals
    - Interest to the public
    - Criteria exist
  - Societal risk
    - · Interest for policy decisions, as risks are low
    - Criteria exist for sites and transmission, but not distribution
  - Frequency of incidents
    - Fires and explosions
    - Could affect reputation and public acceptance
- Different tools used for sites, transmission pipes and distribution systems

## Comparison between Natural Gas and Hydrogen

#### **Similarities**

- Release frequencies
  - Some exceptions
- Below ground dispersion behaviour
- Fire severity
- Human behaviour, response to leaks
- Flame visibility (in practical situations)

#### Differences

- Outflow rate
  - Mass or volumetric outflow
- Above ground dispersion further for hydrogen
- Flammable concentration range
  - Similar LFL but much higher UFL for H<sub>2</sub>
- Ignition probability higher for hydrogen
- Explosion consequences could be worse for hydrogen (but not always)
  - Detonation possible
  - Effects outside source building
  - Unconfined explosions in open air
- Hydrogen does not produce CO

## **Overview of CONIFER Model – Development**

| Years        | Model Development                                              |
|--------------|----------------------------------------------------------------|
| 1995 to 1999 | 'Predictive model' for cast iron mains >12" developed          |
| 2000         | Mains Replacement Prioritisation Scheme (MRPS) implemented     |
| 2002 to 2005 | Model for PE mains developed                                   |
| 2010 to 2014 | Series of updates for natural gas mains                        |
| 2015         | Model used to define building proximity distances in IGEM/TD/3 |
| 2018 to 2020 | H21 Phase 1, CONIFER developed for hydrogen (upstream of ECV)  |
| 2020 to 2022 | H21 Phase 2, CONIFER model extended to downstream of ECV       |
| 2022 to 2023 | Hydrogen Villages                                              |
| 2023 to 2024 | Hydrogen MOBs QRA (domestic / single commercial storey)        |
| 2023 to 2024 | GB Wide QRA – extended to non-domestic buildings               |



## Assessing (Hydrogen) Safety



FIGURE 8 - LIFE CYCLE ACTIVITIES OF A PROJECT



## Types of Safety Assessment

- Bespoke studies
- QRA
- Model development and validation
- Safety Case / Case for Safety
- Functionality assessment.
- Standards development
- Research and testing
- Materials testing
- Procedure development

## What is left to do?

- Further rupture testing
- Dispersion validation
- Ignition probability
- Reliability
- Trials / further industrial projects
- Standards development and amendment
- Regulation change
- Policy decision (support)
- Removal of conservatisms from risk assessments
- Myth busting
- Gap assessment of compliance with current regulations



# Thank you

WHEN TRUST MATTERS

DNV

Jo-Anne.Tomkins@dnv.com

www.dnv.com